Molecular Hydrogen-based regenerative therapy for muscular atrophy: Hydrogen-rich water therapy increases the expression of IGF-1, PI3K(p85a) and B-Myb, decreases the expression of tumor suppressors, promotes regeneration of muscle cells, and reverses muscle atrophy via up regulation of its target gene, 28/June/2017, 11.30pm

Molecular Hydrogen-based regenerative therapy for reversing diabetes: Hydrogen-rich water increases the expression of Sox17, Sox2, Pdx-1, and Ngn3, decreases mTOR expression, promotes regeneration of insulin-producing ß cells, increases insulin secretion, promotes glucose homeostasis and reverses T1D and T2D via down regulation of its target gene, 28/June/2017, 12.11 am
June 27, 2017
Natural product therapy for CyclinD3-CDK6 overexpressing cancers: Artemisinin, isolated from Artemisia Annua, increases the levels of tumor suppressor proteins, inhibits the activity of glycolytic enzymes 6-phosphofructokinase and pyruvate kinase M2, decreases antioxidants NADPH and glutathione levels, increases reactive oxygen species levels, promotes apoptosis, and inhibits the progression of CyclinD3-CDK6 overexpressing cancers via down regulation of its target gene, 29/June/2017, 7.29 pm
June 29, 2017
Show all

Introduction: What they say

A study from the Cardiac Regeneration and Ageing Lab, School of Life Science, Shanghai University, Shanghai 200444, China shows that “miR-29b contributes to multiple types of muscle atrophy.” This research paper was published, in the 25 May 2017 issue of the journal “Nature communications” [One of the best research journals in Biology with an I.F of 11.329 ], by Prof. Xiao J, Li J and others.


What we say:

On the foundation of this interesting finding, Dr L Boominathan PhD, Director-cum-chief Scientist of GBMD, reports that: Molecular Hydrogen-based regenerative therapy for muscular atrophy: Hydrogen-rich water therapy increases the expression of IGF-1, PI3K(p85a) and B-Myb, decreases the expression of tumor suppressors, promotes regeneration of muscle cells, and reverses muscle atrophy via up regulation of its target gene


From significance of the study to Public health relevance:

Given: (1) that Muscular dystrophy/wasting is a degenerative disease; (2) that Muscular dystrophy/wasting also occur due to a number of pathophysiological conditions, including cancer, denervation, disuse and fasting ; (3) that there is no permanent cure for muscular dystrophy; (4)  the life-long discomfort and the medical care required to alleviate pain-associated (muscle weakness) with muscular dystrophy; and (5) the global economic cost spent for muscular dystrophy is enormous, there is an urgent need to find: (i) a way to rejuvenate muscle (satellite) stem cells that were lost in Muscular dystrophy; (ii) a cheaper alternative to the existing expensive drugs; and (iii) a side-effect-free natural product-based drug.


What is known?

Prof. Xiao’s research team members has shown that miRNA-29b:(1) promotes skeletal muscle atrophy; and (2) decreases the expression of IGF-1, PI3K(p85a) and B-Myb. While inhibition of MiR-29b expression: (i) stifles atrophy induced by dexamethasone (Dex), TNF-a and H2O2 treatment; (ii) increases phosphorylations of AKT (Ser-473), FOXO3A (Ser-253), mTOR and P70S6K; (iii) decreases expression of Foxo transcription factors; (iv) inhibits ubiquitin ligase expression; (v) suppresses protein degradation; (vi) increases protein synthesis; (vii) augments the expression of myosin isoforms, including Myh7; (vii) stimulates muscle regeneration, growth, and proliferation, suggesting that inhibition of MiR-29b expression in muscles may attenuate muscular dystrophy.


From Research findings to Therapeutic opportunity:

This study suggests, for the first time, an Electrical acupuncture-based therapy  for Muscular dystrophy.

Hydrogen-rich water therapy, by increasing the expression of its target genes, it may decrease the expression of MiR-29b etc. (Fig. 1). Thereby, it may: (1) increase the expression of IGF-1, PI3K(p85a) and B-Myb; (2) increase phosphorylations of AKT (Ser-473), FOXO3A (Ser-253), mTOR and P70S6K; (3) decrease the expression of Forkhead Box O3 (FOXO3) and its downstream target genes such as MAFBX etc.,; and (4) promote the expression of myosin isoforms, such as Myh7; (vii) augment muscle regeneration, growth, and proliferation.

Thus,  by subjecting myocardial patients to Hydrogen-rich water therapy, one may inhibit muscular dystrophy.

Based on this finding, physicians/myologists/orthopaedicians may consider adopting Hydrogen-rich water therapy  (figure 1) in the treatment of muscular dystrophy. [easy_payment currency=”USD”]

Figure 1. Mechanistic insights into how Hydrogen-rich water therapy, by decreasing the expression of MiR-29b, may promote regeneration of muscle cells and attenuate muscular dystrophy


Details of the research findings:

Idea Proposed/Formulated (with experimental evidence) by: Dr L Boominathan Ph.D.

Terms & Conditions apply http://genomediscovery.org/registration/terms-and-conditions/

Undisclosed mechanistic information: How does Hydrogen-rich water therapy decrease the expression of MiR-29b to re promote regeneration of muscle cells and attenuate muscle dystrophy?
Amount: $ 500#

# Research cooperation

For purchase and payment details, you may reach us at info@genomediscovery.org


References:

Web: http://genomediscovery.org or http://newbioideas.com

Terms & Conditions apply http://genomediscovery.org/registration/terms-and-conditions/

Citation: Boominathan, L., Molecular Hydrogen-based regenerative therapy for muscular atrophy: Hydrogen-rich water therapy increases the expression of IGF-1, PI3K(p85a) and B-Myb, decreases the expression of tumor suppressors, promotes regeneration of muscle cells, and reverses muscle atrophy via up regulation of its target gene, 28/June/2017, 11.30pm, Genome-2-Bio-Medicine Discovery center (GBMD), http://genomediscovery.org

Comments are closed.