Natural product-based PD-1 pathway activation for Pain therapy: Silymarin, isolated from M.Thistle, increases the expression of PD-L1, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability via up-regulation of its target gen, 06/October/2017, 1.03 am

Small molecule-based therapy for TIIDM, Metabolic defects and Longevity: L-deprenyl,  used in the treatment of Parkinson’s disease and depression, increases Sirtuin-4 expression, augments insulin secretion, reduces metabolic stress, improves glucose uptake, promotes glucose homeostasis and prevents progression to TIIDM via down regulation of its target gene, 06/October/2017, 12.49 am
October 5, 2017
Natural product-based therapy for ageing-associated diseases: A therapeutic mix encompassing β-cryptoxanthin, Oleanolic acid and Withaferin A (β-COW), isolated from Sweet peppers/Papaya, Olive oil, Ashwagandha, respectively, increases NMN/NAD levels, decreases interaction of DBC1 with PARP1, increases PARP1 activity, promotes DNA repair, augments tolerance against radiation, cancer and aging via down regulation of its target gene, 6/October/2017, 1.16 am
October 5, 2017
Show all

Introduction:What they say:

A recent study from Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, US shows that “PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1.” This study was published in the 22 May 2017 issue of Nature Neuroscience (one of the best journals in Neurobiology with an impact factor of 16.724+) by Prof Ji RR, Chen G and others.


What we say:

On the foundation of this interesting finding, Dr L Boominathan PhD, Director-cum-chief Scientist of GBMD, reports that:  Natural product-based PD-1 pathway activation for Pain therapy: Silymarin, isolated from M.Thistle, increases the expression of PD-L1, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability via up-regulation of its target gene


What is known?

It has recently been shown that blocking PD-1 with antibodies one could make tumors shrink. This work, relating to Cancer immunotherapy, has been chosen as Science’s breakthrough of the year. However, the work published recently, which is described below, may highlight the caveat in such an approach, as blocking PD-L1 may promote spontaneous pain and allodynia in cancer-bearing mice.

Prof. Ji has shown recently that: (1) Programmed cell death ligand-1 (PD-L1), produced by melanoma and normal neural tissues, inhibits acute and chronic pain; (2) injection of PD-L1 alleviates pain, and thereby functions as an analgesic agent; (3) Neutralization of PD-L1 or Block of PD1 promotes mechanical allodynia (hypersensitivity to pain); (4) PD1 null mice suffers from thermal and mechanical hypersensitivity; (5) PD-L1 promotes phosphorylation of SHP-1 and inhibits Sodium channels via PD-1 activation; and (6) PD-L1 inhibits nociceptive neuron excitability in dorsal root ganglion and thereby functions as a neuromodulator, suggesting that increasing the expression or the level of PD-L1/PD1 may alleviate pain and thermal and mechanical hypersensitivity.


From research findings to therapeutic opportunity:

The study presented here suggests, for the first time, that Silymarin, by increasing the expression of its target genes, it may increase PD-L1 levels (figs. 1-2). Thereby, it may: (a) inhibit acute and chronic pain; (b) alleviate thermal and mechanical hypersensitivity; (c) activate signal transduction cascade downstream of PD-1 receptor; (c) phosphorylate SHP-1; (d) inhibit sodium channels and nociceptive neuron excitability.

Figure 1.Mechanistic insights into how Silymarin inhibits acute and chronic pain. Silymarin enhances PD-L1 levels, suppresses thermal and mechanical hypersensitivity, phosphorylates SHP-1, inhibits activation of sodium channels, and alleviate nociceptive neuron excitability

Thus, pharmacological formulations encompassing Silymarin  or its analogues, either alone or in combination with other drugs,” may be used to attenuate short-term and long-term pain.


Details of the research findings:

Idea Proposed/Formulated (with experimental evidence) by: Dr L Boominathan Ph.D.

Terms & Conditions apply http://genomediscovery.org/registration/terms-and-conditions/

Amount: $500#

Undisclosed mechanistic information: How Silymarin  increases the expression of PD-L1 and attenuates pain.

# Research cooperation


References:

Citation: Boominathan, L., Natural product-based PD-1 pathway activation for Pain therapy: Silymarin, isolated from M.Thistle, increases the expression of PD-L1, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability via up-regulation of its target gen, 06/October/2017, 1.04 am, Genome-2-Bio-Medicine Discovery center (GBMD), http://genomediscovery.org

Web: http://genomediscovery.org or http://newbioideas.com

Courtesy: When you cite drop us a line at info@genomediscovery.org

Comments are closed.