Site is Being Upgraded

Anti-infective Therapy: A pharmaceutical mixture encompassing Rilpivirine  and aspirin inhibits Hepatitis-B/C, Dengue, Zika, Ebola, HIV-1, Mtb, Malaria, CMV, Influenza H1NI1,  respiratory syncytial,  Sindbis, and SFV viruses by increasing the Levels of the Antiviral Proteins IFITM3, & Interferon-stimulated gene 15, 23/January/2018,  5.26 am

Molecular therapy for Diabetic nephropathy (DN): Fosinopril(Trade name: Monopril), an angiotensin converting enzyme inhibitor used in the treatment of hypertension, increases Pyruvate kinase M2 (PKM2) expression, decreases toxic glucose metabolites, mitochondrial dysfunction and apoptosis, augments glycolytic flux and PGC-1α levels, improves metabolic abnormalities, albuminuria, glomerular pathology, and renal dysfunction and alleviates diabetic nephropathy via down regulation of its target gene, 23/January/2018, 5.23 am
January 22, 2018
Molecular therapy for Metastatic cancers: Metformin, an anti-hyperglycemic drug, increases the expression of tumor suppressor/DNA repair protein Fas Ligand (FasL) and hMSH, inhibits cell cycle progression, and suppresses migration, invasion and metastasis of cancer cells via up regulation of its target gene, 23/January/2018, 11.17 pm
January 23, 2018
Show all

Introduction: What they say:

A study from the Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard Medical School, Charlestown, MA 02129, USA shows that “The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus.” This study was published, in the 24 December 2009 issue of the journal “Cell” (the number 1 research journal in General Biology with an impact factor of 33),  by the 2015 Laskar award winner Prof. Stephen Elledge, Brass and others.


What we say: 

On the foundation of this interesting finding, Dr L Boominathan PhD, Director-cum-chief Scientist of GBMD, reports that:   Anti-infective Therapy: A pharmaceutical mixture encompassing  Rilpivirine  and aspirin inhibits Hepatitis-B/C, Dengue, Zika, Ebola, HIV-1, Mtb, Malaria, CMV, Influenza H1NI1,  respiratory syncytial,  Sindbis, and SFV viruses by increasing the Levels of the Antiviral Proteins IFITM3, & Interferon-stimulated gene 15


What is known?

Prof. Stephen Elledge research team has showed that interferon-inducible transmembrane proteins IFITM1, 2, and 3 inhibit  influenza A H1N1 virus, West Nile virus, and dengue virus replication, suggesting that increasing the expression of IFITM3 may confer resistance against these viruses. Other studies suggest that IFITM3 may also protect against Ebola virus, hepatitis C virus, yellow fever virus and SARS coronavirus etc.


From research findings to therapeutic opportunity: 

This study suggests, for the first time, that a pharmaceutical mixture encompassing Rilpivirine  and aspirin , by increasing the expression of its target genes, it may increase the expression of interferon-inducible transmembrane protein IFITM3, Interferon-stimulated gene-15, Mx2 and antimicrobial peptides. Thereby, it may: (1) inhibit the replication of  Hepatitis-B/C, Dengue, Zika, Ebola, HIV-1, Mtb, Malaria, CMV, Influenza H1NI1,  respiratory syncytial,  Sindbis, and SFV viruses; (2) confer resistance against  infection caused by Hepatitis-B/C, Dengue, Zika, Ebola, HIV-1, Mtb, Malaria, CMV, Influenza H1NI1,  respiratory syncytical,  Sindbis, and SFV viruses; and (3) promote innate immunity (Figure 1) Thus, pharmacological formulations encompassing “Rilpivirine  and aspirin or their analogues, either alone or in combination with other drugs” may be used to prevent/treat infections caused by Hepatitis-B/C, Dengue, Zika, Ebola, HIV-1, Mtb, Malaria, CMV, Influenza H1NI1,  respiratory syncytial,  Sindbis, and SFV viruses (Figure 2).

Figure 1. Mechanistic insight into how a pharmaceutical mixture encompassing Rilpivirine  and aspirin inhibits Hepatitis-B/C, Dengue, Zika, Ebola, HIV-1, Mtb, Malaria, CMV, Influenza H1NI1,  respiratory syncytial , Sindbis, and SFV viruses production through induction of its target genes, such as antiviral Proteins IFITM3, Interferon-stimulated gene 15, & Mx2

Figure 2. The chemical structure of Rilpivirine  and aspirin. RA  A pharmaceutical mixture encompassing Rilpivirine  and asprin  may function as a broad-spectrum anti-infective agent


Details of the research findings: 

Idea formulated by Dr L Boominathan PhD

Undisclosed information: How a pharmaceutical mixture encompassing  Rilpivirine  and aspirin increases the expression of Antiviral Protein IFITM3, , Interferon-stimulated gene 15, & Mx2

Amount: $ 500#

# Research cooperation

For more details on payment, you may reach us at admin@genomediscovery.org


References: 

CitationBoominathan L, Anti-infective Therapy: A pharmaceutical mixture encompassing Rilpivirine  and aspirin inhibits Hepatitis-B/C, Dengue, Zika, Ebola, HIV-1, Mtb, Malaria, CMV, Influenza H1NI1,  respiratory syncytial,  Sindbis, and SFV viruses by increasing the Levels of the Antiviral Proteins IFITM3, & Interferon-stimulated gene 15, 23/January/2018,  5.26 am
Courtesy:
 When you cite drop us a line at info@genomediscovery.org,  Genome-2-Bio-Medicine Discovery center (GBMD), http://genomediscovery.org

Web: http://genomediscovery.org

Comments are closed.