Site is Being Upgraded

Amino acid-based therapy for TIIDM and obesity-associated metabolic deficits: D-Serine increases Lipocalin 2 (LCN2) expression, activates an MC4R-dependent anorexigenic pathway, suppresses appetite and weight gain, increases insulin secretion, improves glucose tolerance, promotes glucose homeostasis, improves obesity-associated metabolic deficits and prevents progression to TIIDM via down regulation of its target gene, 28/February/2018, 11.32 pm

Combinatorial therapy for blood-stage Plasmodium infection: A pharmaceutical mixture encompassing Raltegravir and Aspirin decreases the expression of CTLA-4, PD-L1 and LAG-3, promotes CD4+ T-cell function, increases secretion of protective antibodies, promotes and clear blood-stage malaria via up regulation of its target gene, 28/February/2018, 11.24 pm
February 28, 2018
Molecular therapy for TIIDM and Metabolic defects: Syringic acid increases Sirtuin-4 expression, augments insulin secretion, reduces metabolic stress, improves glucose uptake, promotes glucose homeostasis and prevents progression to TIIDM via down regulation of its target gene, 28/November/2017, 11.43 pm
February 28, 2018
Show all

National Science day special

*********

We wish everyone a very happy national science day. On this special occasion, we are happy to announce that Bio-Med/Pharma ideas posted today (28/February/2018) will be available to the use of Scientists/Professors/Teachers/Physicians/Researchers for free. So, there will be no terms and conditions for the ideas posted today. Each idea posted will be served first come, first serve basis. Write to admin@genomediscovery.org for more details.

Dr L Boominathan PhD

President, Director & CSO, GBMD.

___________________________________________________________________________________________________________________________

 

Introduction: What they say

A study from the Department of Physiology-Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York, USA shows that “MC4R-dependent suppression of appetite by bone-derived lipocalin 2.” This research paper was published, in the 8 March 2017 issue of the journal “Nature” [One of the best research journals in General Science with an I.F of 43 plus], by Dr. Stavroula Kousteni and Mosialou and others.


What we say:

On the foundation of this interesting finding, Dr L Boominathan PhD, Director-cum-chief Scientist of GBMD, reports that: Amino acid-based therapy for TIIDM and obesity-associated metabolic deficits: D-Serine increases Lipocalin 2 (LCN2) expression, activates an MC4R-dependent anorexigenic pathway, suppresses appetite and weight gain, increases insulin secretion, improves glucose tolerance, promotes glucose homeostasis, improves obesity-associated metabolic deficits and prevents progression to TIIDM via down regulation of its target gene

price-quote[easy_payment currency=”USD”]


From significance of the study to public health relevance:

Given that: (1) more than 387 million people worldwide are affected by Diabetes mellitus (DM); (2) diabetic disease results in a number of health complications, including diabetic cardiomyopathy (DCM), diabetic nephropathy, diabetic retinopathy, and diabetic neuropathy; (3) one third of people with diabetes suffer from diabetic kidney disease (DKD); and one third of them will develop kidney failure; (4) Obesity plays a central role in the development of TIIDM; (5) Diabetes is going to be one of the top 10 causes of death by 2030; (6) the life-long painful injection/drug treatment is required to treat DM; (7) the global economic cost spent for diabetes treatment in 2014 was little more than 600 billion US dollars, there is an urgent need to find: (i) a way to induce regeneration of adult ß-cells that were lost in DM; (ii) a cheaper alternative to the existing expensive weight-loss drugs; (iii) a side-effect-free natural product-based drug; and (iv) a way to cure, not just treat, diabetes.


What is known?

Dr. Stavroula Kousteni’s research team has recently shown, using loss-and gain-of-function experiments, that Lipocalin 2 (LCN2): (1) induces insulin release; (2) improves glucose tolerance; and (3) augments insulin sensitivity. Further, they have shown that LCN2: (1) binds and activates the melanocortin 4 receptor (MC4R) in the neurons of the hypothalamus; (2) activates an MC4R-dependent appetite-suppressing pathway; (3) suppresses appetite and body weight gain; (4) levels are low in TIIDM patients and they are inversely correlated with body weight gain and blood A1c levels; and (5) levels are higher in patients with lower body weight gain and blood A1c levels, suggesting that increasing the expression of LCN2 may alleviate metabolic deficits in diabetic patients.


From research findings to Therapeutic opportunity:

This study suggests an amino-acid based therapy for TIIDM and Obesity-associated disorders.

Figure 1. Mechanistic insights into how  D-Serine suppresses appetite and promotes insulin secretion

Figure 2. The chemical structure of D-Serine. D-Serine functions as an anti-hyperglycemic agent.

A therapeutic mix encompassing D-Serine, by increasing the expression of its target gene, it may increase the expression of LCN2. Thereby, it may: (1) induce insulin release; (2) increase expression of components of the Insulin-PI3K pathway; (3) promote glucose tolerance; (4) improve insulin sensitivity; (5) activate the MC4R-dependent appetite-suppressing pathway in hypothalamus; (6) suppress appetite; and weight gain; (7) improve metabolic deficits; and (8) promote glucose homeostasis (Fig.1). Thus, pharmacological formulations encompassing D-Serine or its analogues, either alone or in combination with other drugs,” may be used to treat TIIDM and Obesity-associated metabolic deficits/abnormalities.


Details of the research findings:

Idea Proposed/Formulated (with experimental evidence) by: Dr L Boominathan Ph.D.

Terms & Conditions apply http://genomediscovery.org/registration/terms-and-conditions/

Undisclosed mechanistic information: How does a therapeutic mix encompassing  D-Serine  increase the expression of LCN2 to promote insulin secretion?

Amount: $500#

For purchase and payment details, you may reach us at info@genomediscovery.org

# Research cooperation


References:

Web: http://genomediscovery.org or http://newbioideas.com/

Citation: Boominathan, L., Amino acid-based therapy for TIIDM and obesity-associated metabolic deficits: D-Serine increases Lipocalin 2 (LCN2) expression, activates an MC4R-dependent anorexigenic pathway, suppresses appetite and weight gain, increases insulin secretion, improves glucose tolerance, promotes glucose homeostasis, improves obesity-associated metabolic deficits and prevents progression to TIIDM via down regulation of its target gene, 28/February/2018, 11.32 pm, Genome-2-Bio-Medicine Discovery center (GBMD), http://genomediscovery.org

Courtesy: When you cite, drop us a line at info@genomediscovery.org

Comments are closed.