Site is Being Upgraded

Molecular therapy for blood sugar disease: MANF (Mesencephalic astrocyte-derived neurotrophic factor) increases GLP1R and Caveolin-1 (CAV-1) expression, promotes glucose-induced insulin secretion, improves insulin sensitivity, increases energy utilization, promotes weight loss and protects from diet-induced obesity and TIIDM, via up-regulation of its target gene, 17/November/2018, 8.49am

Probiotic-based therapy for diabetic retinopathy: Probiotic Bifidobacterium lactis HY8101 inhibits Soluble epoxide hydrolase (sEH) expression, decreases toxic 19,20-dihydroxydocosapentaenoic acid levels, inhibits pericyte loss, vascular permeability, and inflammation of the eye and progression of diabetic retinopathy, via down-regulation of its target gene, 17/November/2018, 8.35 am
November 17, 2018
Probiotic-based therapy for arthritic pain: Bacillus subtilis B10 increases IL-9 levels, augments proliferation of ILC2s (type 2 innate lymphoid cells) and regulatory T (Treg) cells, promotes resolution of inflammation, attenuates cartilage destruction, decreases bone loss, and inhibits pathological features associated with arthritis via up-regulation of its target genes, 17/November/2018, 11.29 pm
November 17, 2018
Show all

Introduction: What they say

A study from the Comprehensive Diabetes Center and Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, the University of Alabama at Birmingham, Birmingham, AL shows that “miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function.” This research paper was published, in the 3 November 2017 issue of the journal “Diabetes” [One of the best research journals in diabetic research with an I.F of 10 plus], by Prof. Shalev A, Jo S and others.


What we say:

On the foundation of this interesting finding, Dr L Boominathan PhD, Director-cum-chief Scientist of GBMD, reports that:  Molecular therapy for blood sugar disease: MANF (Mesencephalic astrocyte-derived neurotrophic factor) increases GLP1R and Caveolin-1 (CAV-1) expression, promotes glucose-induced insulin secretion, improves insulin sensitivity, increases energy utilization, promotes weight loss and protects from diet-induced obesity and TIIDM, via up-regulation of its target gene


From significance of the study to public health relevance:

Given that: (1) more than 422 million people worldwide are affected by Diabetes mellitus (DM); (2) Diabetes is going to be one of the top 10 causes of death by 2030; (3) the life-long painful injection/drug treatment is required to treat DM; (4) the global economic cost spent for diabetes treatment in 2014 was little more than 600 billion US dollars, there is an urgent need to find: (i) a way to induce regeneration of adult ß-cells that were lost in DM; (ii) a cheaper alternative to the existing expensive weight-loss drugs; (iii) a side-effect-free natural product-based drug; and (iv) a way to cure, not just treat, diabetes.


What is known?

Prof. Shalev A’s research team has recently shown that:(1) MiRNA-204, the highly expressed miRNA in ß-cells, inhibits GLP1R expression; (2) deletion of miR-204: (a) increases cAMP production; (b) increases insulin secretion; (c) augments response to GLP1R activators or agonists; and (d) protects against diabetes; (3) deletion of thioredoxin-interacting protein, the upstream regulator of miR-204, (a) increases GLP1R expression; (b) ameliorates glucose intolerance; (c) improves cAMP production; (d) increases insulin secretion; and (e) protects against diabetes, suggesting that decreasing the expression of MiR-204 or its upstream regulator thioredoxin-interacting protein may promote insulin sensitivity, and alleviate TIIDM.


Research findings to Therapeutic opportunity:

This study suggests that activators of MANF (Mesencephalic astrocyte-derived neurotrophic factor) may aid in the treatment of diabetes. MANF, by increasing the expression of its target gene, it may increase the expression of GLP1R and Caveolin-1 (CAV-1). Thereby, it may: (1) increase pancreatic beta-cell proliferation; (2) increase the expression of genes that promote insulin sensitivity and insulin secretion; (3) promote weight loss; (4) augment energy expenditure; (5) decrease metabolic stress; and (6) promote energy homeostasis (Fig.1). Thus,  pharmacological formulations encompassing Valproic acid or its analogs, either alone or in combination with other drugs,” may be used to treat TIIDM (Figure 2).

Figure 1. Mechanistic insights into how MANF activators function as antidiabetic agents. MANF, by up-regulating its target genes, it may: a) increase cAMP levels; b) increase insulin sensitivity; c) increase secretion; and d) attenuate hyperglycemia

Figure 2. MANF activators may function as anti-diabetic agents. MANF increases CAV1 and GLP-IR through upregulation of its target gene


Details of the research findings:

Idea Proposed/Formulated (with experimental evidence) by Dr L Boominathan Ph.D.

Terms & Conditions apply http://genomediscovery.org/registration/terms-and-conditions/

Undisclosed information: How does MANF increase the expression of GLP1R and CAV-1?

Amount: $500#

# Research cooperation

For purchase and payment details, you may reach us at info@genomediscovery.org

* Research cooperation[easy_payment currency=”USD”]


References:

Web: http://genomediscovery.org  or http://newbioideas.com

Citation: Boominathan, L., Molecular therapy for blood sugar disease: MANF (Mesencephalic astrocyte-derived neurotrophic factor) increases GLP1R and Caveolin-1 (CAV-1) expression, promotes glucose-induced insulin secretion, improves insulin sensitivity, increases energy utilization, promotes weight loss and protects from diet-induced obesity and TIIDM, via up-regulation of its target gene, 17/November/2018, 8.48 am, Genome-2-BioMedicine Discovery center (GBMD), http://genomediscovery.org

Courtesy: When you cite, drop us a line at info@genomediscovery.org

 

 

Comments are closed.