Mechanistic insights into how Social enrichment therapy may function as a pain medication: Social enrichment therapy increases the expression of PD-L1, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability, via up-regulation of its target gene, 30/May/2019, 6.14 am

Mechanistic insights into how social isolation stress aggravates pain sensation and pain: Social isolation stress decreases the expression of PD-L1, aggravates acute and chronic pain, and increases mechanical and thermal hypersensitivity and aggravates nociceptive neuron excitability, via down-regulation of its target gene, 30/May/2019, 5.43 am
May 30, 2019
Mechanistic insights into how social isolation stress promotes weight gain and Diabetes: Social isolation stress increases CADM1 and its downstream target genes that inhibit glucose-induced insulin secretion, aggravates insulin resistance, decreases energy utilization, promotes weight gain and diet-induced obesity and TIIDM, via up regulation of its target gene, 30/May/2019, 6.58 am
May 30, 2019
Show all

Introduction:What they say:

A recent study from Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, US shows that “PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1.” This study was published, in the 22 May 2017 issue of Nature Neuroscience (one of the best journals in Neurobiology with an impact factor of 16.724+), by Prof Ji RR, Chen G and others.


What we say:

On the foundation of this interesting finding, Dr L Boominathan PhD, Director-cum-chief Scientist of GBMD, reports that: Mechanistic insights into how ASocial enrichment therapy may function as a pain medication: Social enrichment therapy increases the expression of PD-L1, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability, via up-regulation of its target gene


What is known?

It has recently been shown that blocking PD-1 with antibodies one could make tumors shrink. This work, relating to Cancer immunotherapy, has been chosen as Science’s breakthrough of the year. However, the work published recently, which is described below, may highlight the caveat in such an approach, as blocking PD-L1 may promote spontaneous pain and allodynia in cancer-bearing mice.

Prof. Ji has shown recently that: (1) Programmed cell death ligand-1 (PD-L1), produced by melanoma and normal neural tissues, inhibits acute and chronic pain; (2) injection of PD-L1 alleviates pain, and thereby functions as an analgesic agent; (3) Neutralization of PD-L1 or Block of PD1 promotes mechanical allodynia (hypersensitivity to pain); (4) PD1 null mice suffers from thermal and mechanical hypersensitivity; (5) PD-L1 promotes phosphorylation of SHP-1 and inhibits Sodium channels via PD-1 activation; and (6) PD-L1 inhibits nociceptive neuron excitability in dorsal root ganglion and thereby functions as a neuromodulator, suggesting that increasing the expression or the level of PD-L1/PD1 may alleviate pain and thermal and mechanical hypersensitivity.


From research findings to therapeutic opportunity:

The study presented here provides, for the first time, mechanistic insights into how Social enrichment therapy attenuates pain.

Social enrichment therapy, by increasing the expression of its target genes, it may increase PD-L1 levels (fig. 1). Thereby, it may: (a) inhibit acute and chronic pain; (b) alleviate thermal and mechanical hypersensitivity; (c) activate signal transduction cascade downstream of PD-1 receptor; (c) phosphorylate SHP-1; (d) inhibit sodium channels and nociceptive neuron excitability.

Figure 1.Mechanistic insights into how Social enrichment therapy inhibits acute and chronic pain. Social enrichment therapy enhances PD-L1 levels, suppresses thermal and mechanical hypersensitivity, phosphorylates SHP-1, inhibits activation of sodium channels, and alleviate nociceptive neuron excitability.

Figure 2. Social enrichment therapy may aid analgesic medication to attenuate acute and chronic pain.

Figure 3. Social enrichment therapy attenuates acute and chronic pain through up regulation of of PD-L1

Given the mechanistic basis of  how Social enrichment therapy (fig.1) may aid in attenuating short- and long-term pain, physicians/orthopedicians/pain specialists may consider encouraging their patients to undergo mindfulness meditation-based therapy (https://genomediscovery.org/2019/05/mindfulness-medication-based-pd-1-pathway-activation-for-pain-therapy-mindfulness-medication-increases-the-expression-of-pd-l1-attenuates-acutes-and-chronic-pain-and-suppresses-mechanical-and/).

Together, this study provides, for the first time, how Social enrichment therapy may function as an adjuvant therapy for patients suffering from short- and long-term pain (Figure 2-3).


Details of the research findings:

Idea Proposed/Formulated (with experimental evidence) by: Dr L Boominathan Ph.D.

Terms & Conditions apply http://genomediscovery.org/registration/terms-and-conditions/

Amount: $500#

Undisclosed mechanistic information: How social enrichment therapy increases the expression of PD-L1 and attenuates pain.

# Research cooperation


References:

Citation: Boominathan, L., Mechanistic insights into how Social enrichment therapy may function as a pain medicationSocial enrichment therapy increases the expression of PD-L1, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability, via up-regulation of its target gene, 30/May/2019, 6.14 am, Genome-2-Bio-Medicine Discovery center (GBMD), http://genomediscovery.org

Web: http://genomediscovery.org or http://newbioideas.com

Courtesy: When you cite drop us a line at info@genomediscovery.org

Comments are closed.