Mechanistic insights into how Methylprednisolone(MPD) may function as a pain medication: Methylprednisolone(MPD),  used in the treatment of rheumatic disorders, asthma, allergies and others,  increases the expression of PD-L1, decreases the expression of Cox-2, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability, via up-regulation of its target gene, 12/July/2019, 10.26 pm

Little RNA can better your heart functioning: LncRNA Mirt2 -based Regenerative therapy for regaining the lost cardiomyocytes in Myocardial patients: LncRNA Mirt2 (Myocardial infarction-associated transcript 1 (Mirt1) increases the expression of ERBB2/Her2 and promotes dedifferentiation  of cardiomyocytes, via up-regulation of its target gene, 10/July/2019, 11.41 am
July 10, 2019
Little RNA can save you from blood sugar disease: Ribonucleic acid-based therapy for Diabetes Mellitus: LncRNA Mirt2  augments the expression of FGF19 and FGF1,  attenuates hepatic glucose production, decreases hepatic acetyl CoA content, brings down the levels of plasma ACTH, and corticosterone, augments insulin sensitivity, promotes weight loss and alleviates TIDM via upregulation of its target gene, 12/July/2019, 10.55 pm
July 12, 2019
Show all

Introduction:What they say:

A recent study from Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China; and Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, US shows that “PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1.” This study was published, in the 22 May 2017 issue of Nature Neuroscience (one of the best journals in Neurobiology with an impact factor of 16.724+), by Prof Ru-Rong Ji, Chen G and others.


What we say:

On the foundation of this interesting finding, Dr L Boominathan PhD, the Director-cum-chief Scientist of GBMD, reports that:  Mechanistic insights into how Methylprednisolone(MPD) may function as a pain medication: Methylprednisolone(MPD),  used in the treatment of rheumatic disorders, asthma, allergies and others,  increases the expression of PD-L1, decreases the expression of Cox-2, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability, via up-regulation of its target gene


What is known?

It has recently been shown that blocking PD-1 with antibodies one could make tumors shrink. This work, relating to Cancer immunotherapy, has been chosen as Science’s breakthrough of the year. However, the work published recently, which is described below, may highlight the caveat in such an approach, as blocking PD-L1 may promote spontaneous pain and allodynia in cancer-bearing mice.

Prof. Ji has shown recently that: (1) Programmed cell death ligand-1 (PD-L1), produced by melanoma and normal neural tissues, inhibits acute and chronic pain; (2) injection of PD-L1 alleviates pain, and thereby functions as an analgesic agent; (3) Neutralization of PD-L1 or Block of PD1 promotes mechanical allodynia (hypersensitivity to pain); (4) PD1 null mice suffers from thermal and mechanical hypersensitivity; (5) PD-L1 promotes phosphorylation of SHP-1 and inhibits Sodium channels via PD-1 activation; and (6) PD-L1 inhibits nociceptive neuron excitability in dorsal root ganglion and thereby functions as a neuromodulator, suggesting that increasing the expression or the level of PD-L1/PD1 may alleviate pain and thermal and mechanical hypersensitivity.


From research findings to therapeutic opportunity:

This study provides mechanistic insights into how Methylprednisolone(MPD) may attenuate pain and traumaMethylprednisolone(MPD), by increasing the expression of its target genes, it increases PD-L1 and decreases Cox-2 (Cyclooxygenase-2) levels (fig. 1). Thereby, it: (a) inhibits acute and chronic pain and trauma; (b) alleviates thermal and mechanical hypersensitivity; (c) activates signal transduction cascade downstream of PD-1 receptor; (c) phosphorylates SHP-1; (d) inhibits sodium channels and nociceptive neuron excitability (Fig 2-4). Thus, a pharmacological mixture encompassing Methylprednisolone(MPD)  or its analogs, either alone or in combination with other drugs, can be used to treat acute and chronic pain and trauma.

Figure 1.Mechanistic insights into how Methylprednisolone(MPD) inhibits acute and chronic pain.  Methylprednisolone(MPD) enhances PD-L1, while decreasing Cox-2 levels. Thereby, it suppresses thermal and mechanical hypersensitivity, phosphorylates SHP-1, inhibits activation of sodium channels, alleviates nociceptive neuron excitability, and attenuates acute and chronic pain.

Figure 2. Methylprednisolone(MPD) functions as an analgesic medication, through induction of PD-L1, and down regulation of Cox-2.

Figure 4. While pharmacological activation of PD-L1 has been shown to attenuate acute and chronic pain, this study suggests that Methylprednisolone(MPD) attenuates attenuates acute and chronic pain and trauma through down regulation of Cox-2, and up regulation of PD-L1.

Given the mechanistic basis as to how Methylprednisolone(MPD) (fig.1) may aid in attenuating or decreasing or alleviating short- and long-term pain and trauma, physicians/orthopedicians/pain therapists may consider using this drug more confidently for patients suffering from short- and long-term pain and trauma (Figure 2-4).


Details of the research findings:

Idea Proposed/Formulated (with experimental evidence) by: Dr L Boominathan Ph.D.

Terms & Conditions apply http://genomediscovery.org/registration/terms-and-conditions/

Amount: $1, 500#

Undisclosed mechanistic information: How does Methylprednisolone(MPD) increase the expression of PD-L1?

# Research cooperation


References:

Citation: Boominathan, L., Mechanistic insights into how Methylprednisolone(MPD) may function as a pain medication: Methylprednisolone(MPD),  used in the treatment of rheumatic disorders, asthma, allergies and others,  increases the expression of PD-L1, decreases the expression of Cox-2, attenuates acutes and chronic pain, and suppresses mechanical and thermal hypersensitivity and inhibits nociceptive neuron excitability, via up-regulation of its target gene, 12/July/2019, 10.26 pm, Genome-2-Bio-Medicine Discovery center (GBMD), http://genomediscovery.org

Web: http://genomediscovery.org or http://newbioideas.com

Courtesy: When you cite drop us a line at info@genomediscovery.org

Comments are closed.