Small-molecule based therapy for autoimmune diabetes (TIDM): Sarcocine (N-Methyl Glycine) , a derivative of amino acid glycine, increases PD-L1 expression, increases Tregs function, promotes immune tolerance, increases pancreatic β-cell proliferation and regeneration, increases insulin secretion, improves insulin sensitivity, increases energy utilization, and reverses TIDM, via up regulation of its target gene, 2/March/2018, 7.33 am

Introduction: What they say A study from the International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, “L. Sacco” Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; and Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA shows that “PD-L1 genetic overexpression or pharmacological restoration in […]

Small-molecule based therapy for autoimmune diabetes (TIDM): Ethyl Pyruvate (EP), a derivative of metabolite pyruvic acid, increases PD-L1 expression, increases Tregs function, promotes immune tolerance, increases pancreatic β-cell proliferation and regeneration, increases insulin secretion, improves insulin sensitivity, increases energy utilization, and reverses TIDM, via up regulation of its target gene, 24/February/2018, 6.01 am

Introduction: What they say A study from the International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, “L. Sacco” Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; and Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA shows that “PD-L1 genetic overexpression or pharmacological restoration in […]

Amino acid-based therapy for autoimmune diabetes (TIDM): D-Serine increases PD-L1 expression, increases Tregs function, promotes immune tolerance, increases pancreatic β-cell proliferation and regeneration, increases insulin secretion, improves insulin sensitivity, increases energy utilization, and reverses TIDM, via up regulation of its target gene, 22/February/2018, 12.24 am

Introduction: What they say A study from the International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, “L. Sacco” Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; and Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA shows that “PD-L1 genetic overexpression or pharmacological restoration in […]

Amino acid-based therapy for autoimmune diabetes (TIDM): L-Arginine, a semi-essential amino acid, increases PD-L1 expression, increases Tregs function, promotes immune tolerance, increases pancreatic β-cell proliferation and regeneration, increases insulin secretion, improves insulin sensitivity, increases energy utilization, and reverses TIDM, via up regulation of its target gene, 21/February/2018, 7.33 am

Introduction: What they say A study from the International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, “L. Sacco” Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; and Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA shows that “PD-L1 genetic overexpression or pharmacological restoration in […]

Molecular therapy for autoimmune diabetes (TIDM): Ursodeoxycholic acid increases PD-L1 expression, increases Tregs function, promotes immune tolerance, increases pancreatic β-cell proliferation and regeneration, increases insulin secretion, improves insulin sensitivity, increases energy utilization, and reverses TIDM, via up regulation of its target gene, 20/February/2018,12.41 am

Introduction: What they say A study from the International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, “L. Sacco” Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; and Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA shows that “PD-L1 genetic overexpression or pharmacological restoration in […]

Laminar shear stress-based therapy for autoimmune diabetes (TIDM): Laminar shear stress increases PD-L1 expression, augments Tregs function, promotes immune tolerance, increases pancreatic β-cell proliferation and regeneration, increases insulin secretion, improves insulin sensitivity, increases energy utilization, and reverses TIDM, via up regulation of its target gene, 16/February/2018, 7.13 am

Introduction: What they say A study from the International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, “L. Sacco” Department of Biomedical and Clinical Sciences, University of Milan, Milan 20157, Italy; and Nephrology Division, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA shows that “PD-L1 genetic overexpression or pharmacological restoration in […]